

Laboratory database to examine the effects of confining pressure and static shear stress on liquefaction triggering

Kristin Ulmer and Brian Carlton June 28, 2022

Outline

- Background
- Data collection
- Computing CRR
- Effect of confining stress (K_{σ})
- Effect of static shear stress (K_{α})
- Future work

Background

- CSR = cyclic stress ratio CSR = $\Delta \tau / \sigma'_{v}$ (CDSS and CTS tests)
 - $CSR = \Delta \sigma_d / (2 p'_0)$ (CTRX tests)
- CRR = cyclic resistance ratio. CSR for a given number of cycles (N_{ref})
- $K_{\sigma} = CRR_{\sigma \neq 1} / CRR_{\sigma = 1}$
- $K_{\alpha} = CRR_{\alpha \neq 0} / CRR_{\alpha = 0}$

Ni et al. (2020)

Data Collection

- Collected data from 63 different studies (35 with K_{σ} values and 36 with K_{α} values)
- Estimated K_{σ} and K_{α} values based on:
 - CSR vs N data
 - Reported CRR values
 - Reported K_{σ} and K_{α} values
- Only used studies with baseline conditions ($\sigma'_c = 1$ atm or $\tau_s = 0$)
- Only used cyclic sinusoidal loading

Data Collection

- Reference(s)
- Soil data
 - Soil name
 - FC, PI, LL
 - OCR
 - minimum and maximum void ratio
- Test data
 - Test type (CTRX, CDSS or CTS)
 - Preparation or sampling method
 - Liquefaction criterion
 - Loading frequency

- Soil state
 - relative density (Dr)
 - void ratio (e)
- Stresses
 - σ'_c (i.e., σ'_v for CDSS tests and both axial and radial stress for CTRX and CTS)
 - τ_{s} , α , or K_{c}
- Results
 - CSR vs N
 - CRR
 - K_{σ} and K_{α}

Computing CRR

- Fit a power law to the CSR v N data (CSR = aN^{-b})
- Estimated CRR as CSR at N_{ref} = 15
- To avoid excessive extrapolation, imposed three constraints:
 - Range of data must contain or be within 5 cycles of N_{ref}
 - At least one test with N = 2-50
 - All tests with N > 110 not considered in regression
- Collected reported CRR values and adjusted to $N_{ref} = 15$
- Computed 707 CRR, collected 477 reported CRR, total of 960 unique CRR values

K_σ Database

• 231 unique K_{σ} values

NG/

LIQUEFACTION

- 147 from CTRX, 82 from CDSS and 2 CTS
- Most K_{σ} values are from soils with FC < 10%, Dr = 30–70%, σ'_v < 500 kPa, and $\alpha \approx 0$
- Only 20 K_{σ} values are from soils with PI > 0

Soil Name	Fines (%)	PI	Number of K_{σ}
Toyoura Sand	0	NP	34
Fraser River Sand	0	NP	30
Nakdong River Sand	0	NP	27
Silica Sand	0	NP	14
Adapazari Silts	Varies	Varies	12
M31 clean quartz sand	0	NP	9
Wenchuan Sand	0	NP	8
Sacramento River Sand	0	NP	8

Comparison of K_{σ} data with models

- 326 unique K_{α} values (either α or K_c)
- 277 unique K_{α} values (at least α known)
- 85 from CTRX, 170 from CDSS and 22 CTS
- Most K_{α} values are from soils with FC < 10%, Dr = 25–75%, σ'_v < 500 kPa, and α = 0-0.3
- Only 20 K_{σ} values are from soils with PI > 0

Soil Name	Fines (%)	ΡΙ	Number of K _a
Toyoura Sand	0	NP	47
Silica Sand	0	NP	43
Babolsar Sand	0	NP	32
Fraser River Sand	0	NP	27
Nakdong River Sand	0	NP	18
Ottawa Sand	0	NP	13
Toyoura Sand + silt	10	NP	12
Sacramento River Sand	0	NP	12

NGI

LIQUEFACTION

Future Work

- How to combine soils with high fines and no Dr with soils with low fines (critical state framework, void ratio, something else?)
- Compile critical state data
- How to properly combine CTRX and CDSS tests (stress invariant CSR?)
- Adjustments to K_{σ} at high confining pressures for particle breakage (or low confining pressures for weak soils, e.g. calcareous sands)
- Estimate K_{σ} and K_{α} when no CRR values are available for baseline conditions
- Explore other uses of the database (e.g. laboratory based liquefaction triggering curve)

Conclusions

- Compiled a database of 231 unique K_{σ} values and 326 unique K_{α} values with a wide range of soil and state parameters
- No clear bias or trend when comparing available models to the database
 - Significant scatter in the residuals
 - Small trend with fines content and K_{σ} residual for Cetin et al. (2018)
 - Small trend with Dr and K_{α} residual for Boulanger et al. (2003)
- No clear trend with effect of preparation method
- Database will be made available on DesignSafe
- Many opportunities for future research!

