

LABORATORY COMPONENT OF NEXT GENERATION LIQUEFACTION DATABASE

Kenneth S. Hudson, Paolo Zimmaro, Claudia Rangel, Scott J. Brandenberg,

Jonathan P. Stewart

Department of Civil and Environmental Engineering University of California, Los Angeles

What is NGL?

The Next Generation Liquefaction (NGL) project has developed an online relational database of liquefaction case histories to support model development

http://nextgenerationliquefaction.org/

NGL Laboratory Component Motivation

- The goal of NGL is to provide a dataset with a wide parameter space to enable more accurate model development
- The field testing database was recently expanded to include laboratory test program results
- Laboratory results can inform aspects of liquefaction models that are poorly constrained by case histories alone
 - K_{σ} , K_{α} , Liquefaction Susceptibility

Example Application: Liquefaction Susceptibility

There are 3 phases of a liquefact

- 1. Assessment of soil suscep
- 2. Evaluation of expected groun strength (resistance)
- 3. Assessment of expected defc

The difficulty with using case hist potential for *false negatives* and behavior in low-plasticity fine-grafines content

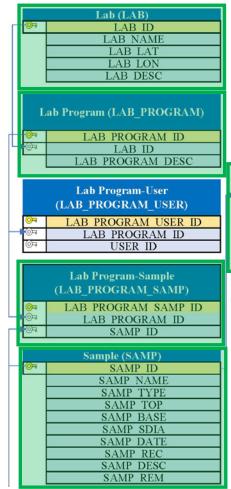
This makes susceptibility poorly history data and laboratory test of

Database Structure

- A thorough description of the NGL database structure can be found in Brandenberg et al. [4].
- The Lab component is built into the NGL framework as a relational database that can be queried using structured query language (SQL).
- A relational database comprises tables linked to one another by means of identifiers called keys. Each table has a primary key that uniquely identifies table entries. If two tables are linked, the primary key of a table is used as a foreign key in another table. This structure is called schema.

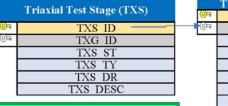
Person_ID	Person_Name
1	Ken
2	Scott
3	Jon

Fruit_ID	Person_ID
1	3
2	1
3	2


Database Structure

Tests that can be input into the database

- Triaxial
- Direct Simple Shear (1D and 2D)
- Relative Density
- Atterberg Limits
- Grain Size
- "Index" (G_s, w_c, % Fines)
- Consolidation


	DILIVII II			
	SPEC REF SPEC TOP SPEC BASE			
	SPEC CREW SPEC REM		<u></u>	Rel
F	TILE (FILE)		•	
	FILE ID FILE NAME FILE TYPE			
	FILE SIZE FILE FILE FILE PUB		<u>()</u> = (())=	Oth
		4	O	

	Triaxial Test General (TXG)		Tria
⊙ ¬	TXG ID		1118
- OP	SPEC ID	0	
	TXG E0	100	
	TXG W0	1 —	
	TXG DIAM	1	
	TXG H0	1	
	TXG DESC]	
I	Direct Simple Shear General	Di	rect S
	(DSSG)	+0=	
0=	DSSG ID	<u> </u>	
-03	SPEC ID		
1	DSSG E0	111	
	DSSG W0	111	
	DSSG DIAM	111	
	DSSG H0	_	
	DSSG DESC	1	Atte
		₩ 0⊃	
	Relative Density (RDEN)	(O)=3	
⊙ ⊐	RDEN ID	ו '	
→ ◎¬	SPEC ID	1	
	RDEN EMIN	1	
	RDEN EMAX	1	
	RDEN METH	1'	
	RDEN REM		I
		⊙ =	
	Other Lab. Tests (OTHR)	- POP	
O =	OTHR ID	ו י	
→ ◎=	SPEC ID	1 1	
→ ◎¬	FILE ID	1 1	
	OTHR NAME	1 1	
	OTHR TYPE	1 1	
	OTHR DESC	1 1	
	OTHE BLOC	٠	

Grain Size General (GRAG)

GRAG ID

SPEC ID

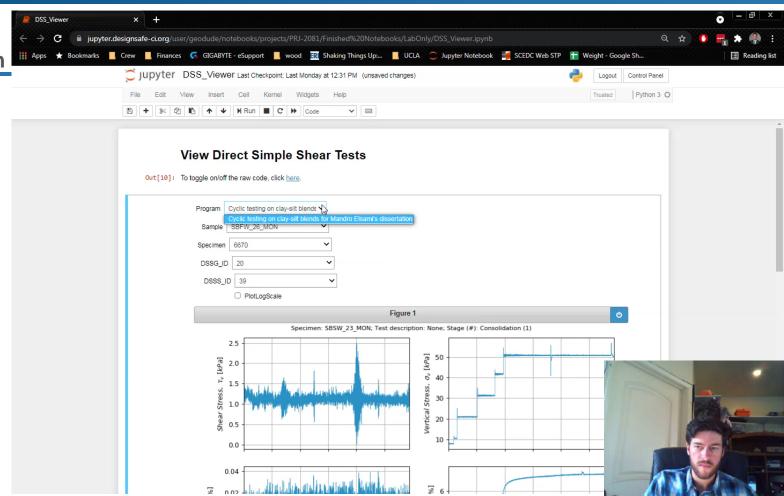
Di	Direct Simple Shear Stage (DSSS)	
© =	DSSS ID	
(O)=3	DSSG ID	
	DSSS ST TOP	
	DSSS TY	
	DSSS DR	
	DSSS DESC	
	Atterberg Limits (PLAS)	

		Atterberg Limits (PLAS)
ì	Ģ.	PLAS ID
	(F)	SPEC ID
		PLAS LL
		PLAS PL
		PLAS METH
		PLAS REM

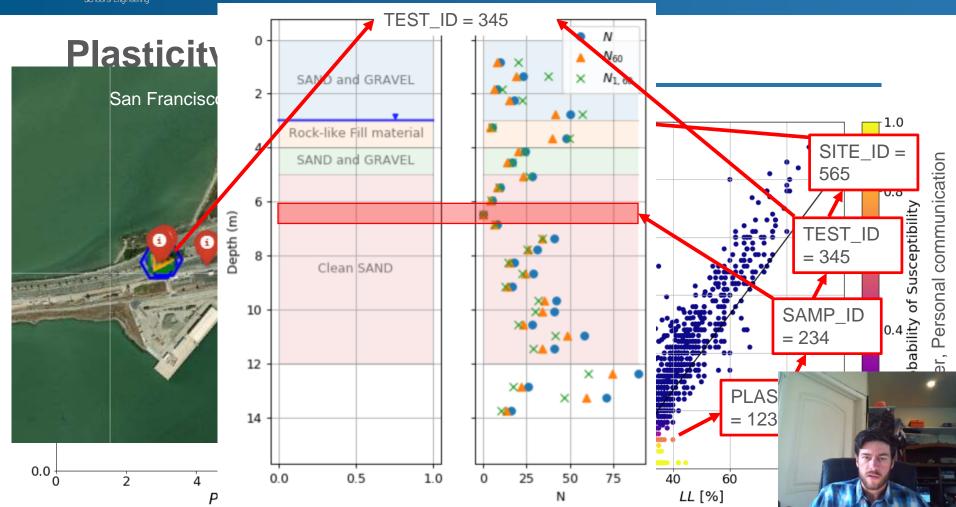
	Index Tests (INDX)
⊙ ¬	INDX ID
(O)=	SPEC ID
	INDX BDEN
	INDX DDEN
	INDX GS
	INDX WC
	INDX FINE
	INDX METH
	INDX REM

	Grain Size Dist. (GRAT)
<mark>⊙</mark> =	GRAT ID

	Triaxial Test Data (TXD)
<u>•</u>	TXD ID
)F	TXS ID
	TXD TIME
	TXD SD
	TXD CP
	TXD PP
	TXD EA
	TXD EV


Direct Simple Shear 1D Data (DSSD1D)		
© =	DSSD1D ID	
(O)=	DSSS ID	
	DSSD1D TIME	
	DSSD1D TAU	
	DSSD1D SIGV	
	DSSD1D YHV	
	DSSD1D EPSV	

Direct Simple Shear 2D Data (DSSD2D) DSSD2D ID DSSS ID DSSD2D TIME DSSD2D TAU1



Data Querying and Visualization

UCLA Samueli School of Engineering

Thank you

